Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
1.
Cell Insight ; 3(3): 100161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646547

RESUMO

Cell polarity is crucial for gastric mucosal barrier integrity and mainly regulated by polarity-regulating kinase partitioning-defective 1b (Par1b). During infection, the carcinogen Helicobacter pylori hijacks Par1b via the bacterial oncoprotein CagA leading to loss of cell polarity, but the precise molecular mechanism is not fully clear. Here we discovered a novel function of the actin-binding protein cortactin in regulating Par1b, which forms a complex with cortactin and the tight junction protein zona occludens-1 (ZO-1). We found that serine phosphorylation at S405/418 and the SH3 domain of cortactin are important for its interaction with both Par1b and ZO-1. Cortactin knockout cells displayed disturbed Par1b cellular localization and exhibited morphological abnormalities that largely compromised transepithelial electrical resistance, epithelial cell polarity, and apical microvilli. H. pylori infection promoted cortactin/Par1b/ZO-1 abnormal interactions in the tight junctions in a CagA-dependent manner. Infection of human gastric organoid-derived mucosoids supported these observations. We therefore hypothesize that CagA disrupts gastric epithelial cell polarity by hijacking cortactin, and thus Par1b and ZO-1, suggesting a new signaling pathway for the development of gastric cancer by Helicobacter.

2.
J Dent Sci ; 19(2): 1036-1043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618069

RESUMO

Background/purpose: The oral cavity is considered a reservoir of Helicobacter pylori associated with gastric infection. It aimed to examine the prevalence of H. pylori strains from the oral cavity and gastric tissue of patients with different stage of gastric-diseases. Strains were further characterized for virulence genes, adhesion ability, and inflammation responses. Materials and methods: 11 non-disease, 15 gastritis, and 15 gastric cancer participated in the study. After clinical examination, gastric biopsies, saliva and plaque samples were collected and H. pylori levels were examined by real-time PCR and cultivation. The cagA and vacA genes were investigated from the culture strains. Adhesion ability and pro-inflammatory responses were analyzed in comparison between the presence of virulent genes and disease status. Results: Relatively poor periodontal condition was found among gastric cancer patients. Prevalence of H. pylori-positive was 84.8% and 19.5% by real-time PCR and cultivation, respectively. The cagA and vacA gene-positive strains were 52.6% and 5.3%, respectively, which were found more in gastric cancer patients. The cagA gene-positive strains were found to be higher in gastric cancer patients, and strains had significantly higher adhesion ability and pro-inflammation expressions than the cagA gene-negative strains. Conclusion: Colonization by H. pylori in oral cavity was confirmed, and the cagA gene-positive strains play a crucial role in both adhesion and inflammatory responses. The presence of H. pylori and its virulence gene in oral cavity should be received attention. An eradication of such strains from oral cavity may help to prevent the transmission and recolonization to gastric organs.

3.
Genes (Basel) ; 15(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540398

RESUMO

Helicobacter pylori (H. pylori) is associated with gastric inflammation and mucosal antibodies against its cytotoxin-associated gene A (CagA) are protective. Vaccine-elicited immunity against H. pylori requires MHC class II expression, indicating that CD4+ T cells are protective. We hypothesized that the HLA-DR genotypes in human populations include protective alleles that more effectively bind immunogenic CagA peptide fragments and susceptible alleles with an impaired capacity to present CagA peptides. We recruited patients (n = 170) admitted for gastroendoscopy procedures and performed high-resolution HLA-DRB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.2% positive) and H. pylori classified as positive or negative in gastric mucosal tissue slides (72.9% positive). Pearson Chi-square analysis revealed that H. pylori infection was significantly increased in DRB1*11:04-positive individuals (p = 0.027). Anti-CagA IgA was significantly decreased in DRB1*11:04 positive individuals (p = 0.041). In contrast, anti-CagA IgA was significantly increased in DRB1*03:01 positive individuals (p = 0.030). For these HLA-DRB1 alleles of interest, we utilized two in silico prediction methods to compare their capacity to present CagA peptides. Both methods predicted increased numbers of peptides for DRB1*03:01 than DRB1*11:04. In addition, both alleles preferred distinctively different CagA 15mer peptide sequences for high affinity binding. These observations suggest that DRB1*11:04 is a susceptible genotype with impaired CagA immunity, whereas DRB1*03:01 is a protective genotype that promotes enhanced CagA immunity.


Assuntos
Gastrite , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Cadeias HLA-DRB1/genética , Citotoxinas , Gastrite/genética , Genótipo , Peptídeos/genética , Imunoglobulina A/genética
4.
Helicobacter ; 29(2): e13066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468575

RESUMO

BACKGROUND: SHP1 has been documented as a tumor suppressor and it was thought to play an antagonistic role in the pathogenesis of Helicobacter pylori infection. In this study, the exact mechanism of this antagonistic action was studied. MATERIALS AND METHODS: AGS, MGC803, and GES-1 cells were infected with H. pylori, intracellular distribution changes of SHP1 were first detected by immunofluorescence. SHP1 overexpression and knockdown were then constructed in these cells to investigate its antagonistic roles in H. pylori infection. Migration and invasion of infected cells were detected by transwell assay, secretion of IL-8 was examined via ELISA, the cells with hummingbird-like alteration were determined by microexamination, and activation of JAK2/STAT3, PI3K/Akt, and ERK pathways were detected by immunoblotting. Mice infection model was established and gastric pathological changes were evaluated. Finally, the SHP1 activator sorafenib was used to analyze the attenuating effect of SHP1 activation on H. pylori pathogenesis in vitro and in vivo. RESULTS: The sub-localization of SHP1 changed after H. pylori infection, specifically that the majority of the cytoplasmic SHP1 was transferred to the cell membrane. SHP1 inhibited H. pylori-induced activation of JAK2/STAT3 pathway, PI3K/Akt pathway, nuclear translocation of NF-κB, and then reduced EMT, migration, invasion, and IL-8 secretion. In addition, SHP1 inhibited the formation of CagA-SHP2 complex by dephosphorylating phosphorylated CagA, reduced ERK phosphorylation and the formation of CagA-dependent hummingbird-like cells. In the mice infection model, gastric pathological changes were observed and increased IL-8 secretion, indicators of cell proliferation and EMT progression were also detected. By activating SHP1 with sorafenib, a significant curative effect against H. pylori infection was obtained in vitro and in vivo. CONCLUSIONS: SHP1 plays an antagonistic role in H. pylori pathogenesis by inhibiting JAK2/STAT3 and PI3K/Akt pathways, NF-κB nuclear translocation, and CagA phosphorylation, thereby reducing cell EMT, migration, invasion, IL-8 secretion, and hummingbird-like changes.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Helicobacter pylori/fisiologia , NF-kappa B/metabolismo , Interleucina-8/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Helicobacter/patologia , Sorafenibe/metabolismo , Células Epiteliais/metabolismo
5.
BMC Cardiovasc Disord ; 24(1): 161, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491418

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori), according to a number of recent observational studies, is connected to atherosclerosis (AS). However, the link between H. pylori and AS is debatable. METHODS: In order to calculate the causal relationship between H. pylori and AS, we employed a two-sample Mendelian randomization (MR) analysis. The data for H. pylori were obtained from the IEU GWAS database ( https://gwas.mrcieu.ac.uk/datasets/ ) and the data for AS were obtained from the Finngen GWAS database ( https://r5.finngen.fi/ ). We selected single nucleotide polymorphisms with a threshold of 5 × 10-6 from earlier genome-wide association studies. MR was performed mainly using the inverse variance weighted (IVW) method. To ensure the reliability of the findings, We performed a leave-one-out sensitivity analysis to test for sensitivity. F-value was used to test weak instrument. RESULTS: A positive causal relationship between H. pylori OMP antibody levels and peripheral atherosclerosis was shown by our two-sample MR analysis (odds ratio (OR) = 1.33, 95% confidence interval (CI) = 1.14-1.54, P = 0.26E-03) using IVW. Additionally, there was a causative link between coronary atherosclerosis and H. pylori VacA antibody levels (IVW OR = 1.06, 95% CI = 1.01-1.10, P = 0.016). All the F-values were above 10. CONCLUSIONS: This MR study discovered a causal link between H. pylori and AS. Different antibodies have different effects, so future researches are needed to figure out the exact mechanisms behind this link.


Assuntos
Aterosclerose , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Aterosclerose/diagnóstico , Aterosclerose/genética , Anticorpos Antibacterianos
6.
Trends Microbiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38485609

RESUMO

Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.

7.
J Cell Biochem ; 125(3): e30527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332574

RESUMO

The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/patologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339039

RESUMO

Helicobacter pylori (H. pylori) is responsible for causing chronic gastritis, which can cause peptic ulcer and premalignant lesions such as atrophic gastritis, intestinal metaplasia, and dysplasia, with the risk of developing gastric cancer. Recent data describe that H. pylori colonizes the gastric mucosa of more than 50% of the world's population; however, this bacterium has been described as infecting the human population since its prehistory. This review focuses on the populations and subpopulations of H. pylori, differentiated by the polymorphisms present in their constitutive and virulence genes. These genes have spread and associated with different human populations, showing variability depending on their geographical distribution, and have evolved together with the human being. The predominant genotypes worldwide, Latin America and Chile, are described to understand the genetic diversity and pathogenicity of H. pylori in different populations and geographic regions. The high similarity in the sequence of virulence genes between H. pylori strains present in Peruvian and Spanish natives in Latin America suggests a European influence. The presence of cagA-positive strains and vacA s1 m1 allelic variants is observed with greater prevalence in Chilean patients with more severe gastrointestinal diseases and is associated with its geographical distribution. These findings highlight the importance of understanding the genetic diversity of H. pylori in different regions of the world for a more accurate assessment of the risk of associated diseases and their potential impact on health.


Assuntos
Gastrite Atrófica , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/microbiologia , América Latina/epidemiologia , Gastrite/patologia , Genótipo , Medição de Risco , Infecções por Helicobacter/complicações , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Antígenos de Bactérias/genética
9.
Front Microbiol ; 15: 1351784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298891

RESUMO

Helicobacter pylori (H. pylori) infection may alter the host's resistance to tsutsugamushi disease pathogens through the Th1 immune response, leading to potential synergistic pathogenic effects. A total of 117 scrub typhus cases at Beihai People's Hospital and affiliated hospitals of Youjiang University for Nationalities and Medical Sciences were studied from January to December 2022, alongside 130 healthy individuals forming the control group. All participants underwent serum H. pylori antibody testing. The prevalence of H. pylori infection was significantly higher among scrub typhus patients (89.7%) compared to healthy individuals (54.6%) (p < 0.05). Moreover, type I H. pylori infection was notably more prevalent in scrub typhus cases (67.5%) compared to healthy individuals (30%) (p < 0.05). Multifactorial analysis demonstrated type I H. pylori infection as an independent risk factor for scrub typhus (adjusted odds ratio: 2.407, 95% confidence interval: 1.249-4.64, p = 0.009). Among scrub typhus patients with multiple organ damage, the prevalence of type I H. pylori infection was significantly higher (50.6%) than type II H. pylori infection (15.4%) (χ2 = 4.735, p = 0.030). These results highlight a higher incidence of H. pylori infection in scrub typhus patients compared to the healthy population. Additionally, type I H. pylori strain emerged as an independent risk factor for scrub typhus development. Moreover, individuals infected with type I H. pylori are more susceptible to multiple organ damage. These findings suggest a potential role of H. pylori carrying the CagA gene in promoting and exacerbating scrub typhus.

10.
Can J Microbiol ; 70(4): 119-127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176008

RESUMO

Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Interleucina-8/metabolismo , Infecções por Helicobacter/microbiologia
11.
Mol Biol Rep ; 51(1): 95, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194007

RESUMO

BACKGROUND: Helicobacter pylori is a fastidious pathogen that is required a complicated medium for growth. Invading epithelial cells of the stomach. H. pylori virulence factors are classified by function, acidic resistivity, adhesion, chemotaxis and motility, molecular mimicry, immunological invasion and modulation, and toxins formation such as cytotoxin-associated genes A (cagA) and vacuolating cytotoxin A (vacA). This study aims to determine a simple and innovative technique to isolate H. pylori from gastric biopsies and assess pathogenicity by virulence factor gene detection. METHODS: A total of 200 patients who were suspected of having H. pylori infection had two antral gastric biopsies undertaken. A rapid urease test (RUT) was used for one, and Brain Heart Infusion broth (BHI) was used to cultivate the other. The molecular study included diagnostics utilizing the 16sRNA housekeeping gene along with the identification of the virulence factors genes (cagA, cagT, and vacA) and sequencing, RESULT: Of the 200 antral gastric biopsies collected, 135 were positive rapid urease tests, and 17 H. pylori isolates were successfully obtained from 135 biopsies. The 16SrRNA as a housekeeping gene is confirmed, and about 53%, 70.5%, and 82.3% of the 17 isolates show carrying cagA, cagT, and vacA genes, respectively. All peptic ulcer isolates have the cagA gene, while Gastroesophageal Reflux Disease (GERD) and non-peptic ulcer disease (NPUD) isolates show the lack of the cagA gene. All bacteria, which were isolated from peptic ulcer, nodular gastritis, and gastritis patients, have a vacA gene. CONCLUSION: The effective method for isolating H. pylori is centrifuging the transport broth after 24 h of incubation. The cagA toxin causes peptic ulcer while vacA toxin induces several histopathological changes in the stomach. Three virulence genes were present in all peptic ulcer-causing bacteria, while only one or none were present in the GERD and NPUD biopsy isolates.


Assuntos
Gastrite , Refluxo Gastroesofágico , Helicobacter pylori , Úlcera Péptica , Humanos , Virulência/genética , Helicobacter pylori/genética , Urease/genética , Fatores de Virulência/genética , Citotoxinas
12.
Crit Rev Microbiol ; : 1-17, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288575

RESUMO

Cancer research has extensively explored various factors contributing to cancer development, including chemicals, drugs, smoking, and obesity. However, the role of bacterial infections in cancer induction remains underexplored. In particular, the mechanisms underlying H. pylori-induced B-cell lymphoma, a potential consequence of bacterial infection, have received little attention. In recent years, there has been speculation about contagious agents causing persistent inflammation and encouraging B-lymphocyte transition along with lymphomagenesis. MALT lymphoma associated with chronic H. pylori infection, apart from two other central associated lymphomas - Burkitt's Lymphoma and DLBCL, is well studied. Owing to the increasing colonization of H. pylori in the host gut and its possible action in the development of B-cell lymphoma, this review aims to summarize the existing reports on different B-cell lymphomas' probable association with H. pylori infections; also emphasizing the function of the organism in lymphomagenesis; including its interaction with the host, pathogen and host-specific factors, and tumor microenvironment.

13.
Immunogenetics ; 76(1): 1-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979046

RESUMO

Helicobacter pylori was reported as an important cause of gastritis, and gastric ulcers and CagA oncoprotein-producing H. pylori subgroups were blamed to increase the severity of gastritis. Disparities were reported in that the presence of serum anti-CagA IgA was not parallel with CagA-positive H. pylori cohabitation. We hypothesized that the HLA-DQA1 ~ DQB1 haplotypes in human populations include protective haplotypes that more effectively present immunogenic CagA peptides and susceptible haplotypes with an impaired capacity to present CagA peptides. We recruited patients (n = 201) admitted for gastroendoscopy procedures and performed high-resolution HLA-DQA1 and DQB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.0% positive), and H. pylori was classified as positive or negative in gastric mucosal tissue slides (72.6% positive). The HLA DQA1*05:05 allele (29.1%) and HLA DQB1*03:01 allele (32.8%) were found at the highest frequency among gastritis patients of Turkish descent. In HLA DQA1*05:05 ~ DQB1*03:01 double homozygous (7.3%) and heterozygous (40.7%) haplotype carriers, the presence of anti-CagA IgA decreased dramatically, the presence of H. pylori increased, and the presence of metaplasia followed a decreasing trend. The DQ protein encoded by HLA DQA1*05:05-DQ*03:01 showed a low binding affinity to the CagA peptide when binding capacity was analyzed by the NetMHCIIPan 4.0 prediction method. In conclusion, HLA DQA1 ~ DQB1 polymorphisms are crucial as host defense mechanisms against CagA H. pylori since antigen binding capacity plays a crucial role in anti-CagA IgA production.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Haplótipos , Antígenos HLA-DQ/genética , Cadeias alfa de HLA-DQ/genética , Cadeias beta de HLA-DQ/genética , Gastrite/genética , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Alelos , Peptídeos , Metaplasia , Imunoglobulina A/genética , Frequência do Gene , Cadeias HLA-DRB1
14.
Microbes Infect ; 26(1-2): 105246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37926369

RESUMO

The delivery of Helicobacter pylori CagA into host cells was long believed to occur through the integrin cell surface receptors. However, the role of CEACAM receptors has recently been highlighted, instead. Here, we have categorized the existing experimental evidence according to whether deletion, upregulation, downregulation, or inhibition of the target ligands (T4SS or HopQ) or receptors (integrins or CEACAMs), result in alterations in CagA phosphorylation, cell elongation, or IL-8 production. According to our analysis, the statistics favor the essence of most of the T4SS constituents and the involvement of HopQ adhesin in all three functions. Concerning the integrin family, the collected data is controversial, but yielding towards it being dispensable or involved in CagA translocation. Yet, regarding cell elongation, more events are showing ß1 integrin being involved, than αvß4 being inhibitory. Concerning IL-8 secretion, again there are more events showing α5, ß1 and ß6 integrins to be involved, than those showing inhibitory roles for ß1, ß4 and ß6 integrins. Finally, CEACAM 1, 3, and 5 are identified as mostly essential or involved in CagA phosphorylation, whereasCEACAM 4, 7, and 8 are found dispensable and CEACAM6 is under debate. Conversely, CEACAM1, 5 and 6 appear mostly dispensable for cell elongation. Noteworthy is the choice of cell type, bacterial strain, multiplicity and duration of infection, as well as the sensitivity of the detection methods, all of which can affect the variably obtained results.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Integrinas/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Helicobacter pylori/genética , Interleucina-8/metabolismo
15.
Cancer Med ; 12(24): 22407-22419, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037736

RESUMO

BACKGROUND: Helicobacter pylori is a gastric pathogen that is responsible for causing chronic inflammation and increasing the risk of gastric cancer development. It is capable of persisting for decades in the harsh gastric environment because of the inability of the host to eradicate the infection. Several treatment strategies have been developed against this bacterium using different antibiotics. But the effectiveness of treating H. pylori has significantly decreased due to widespread antibiotic resistance, including an increased risk of gastric cancer. The small interfering RNAs (siRNA), which is capable of sequence-specific gene-silencing can be used as a new therapeutic approach for the treatment of a variety of such malignancies. In the current study, we rationally designed two siRNA molecules to silence the cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) genes of H. pylori for their significant involvement in developing cancer. METHODS: We selected a common region of all the available transcripts from different countries of CagA and VacA to design the siRNA molecules. The final siRNA candidate was selected based on the results from machine learning algorithms, off-target similarity, and various thermodynamic properties. RESULT: Further, we utilized molecular docking and all atom molecular dynamics (MD) simulations to assess the binding interactions of the designed siRNAs with the major components of the RNA-induced silencing complex (RISC) and results revealed the ability of the designed siRNAs to interact with the proteins of RISC complex in comparable to those of the experimentally reported siRNAs. CONCLUSION: These designed siRNAs should effectively silence the CagA and VacA genes of H. pylori during siRNA mediated treatment in gastric cancer.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Helicobacter pylori/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/microbiologia , Simulação de Acoplamento Molecular , Citotoxinas/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia
16.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139349

RESUMO

The discovery of Helicobacter pylori (H. pylori) in the early 1980s by Nobel Prize winners in medicine Robin Warren and Barry Marshall led to a revolution in physiopathology and consequently in the treatment of peptic ulcer disease. Subsequently, H. pylori has also been linked to non-gastrointestinal diseases, such as autoimmune thrombocytopenia, acne rosacea, and Raynaud's syndrome. In addition, several studies have shown an association with cardiovascular disease and atherosclerosis. Our narrative review aims to investigate the connection between H. pylori infection, gut microbiota, and extra-gastric diseases, with a particular emphasis on atherosclerosis. We conducted an extensive search on PubMed, Google Scholar, and Scopus, using the keywords "H. pylori", "dysbiosis", "microbiota", "atherosclerosis", "cardiovascular disease" in the last ten years. Atherosclerosis is a complex condition in which the arteries thicken or harden due to plaque deposits in the inner lining of an artery and is associated with several cardiovascular diseases. Recent research has highlighted the role of the microbiota in the pathogenesis of this group of diseases. H. pylori is able to both directly influence the onset of atherosclerosis and negatively modulate the microbiota. H. pylori is an important factor in promoting atherosclerosis. Progress is being made in understanding the underlying mechanisms, which could open the way to interesting new therapeutic perspectives.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Microbiota , Úlcera Péptica , Humanos , Aterosclerose/complicações , Doenças Cardiovasculares/complicações , Infecções por Helicobacter/complicações
18.
BMC Microbiol ; 23(1): 401, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114907

RESUMO

BACKGROUND: Two important virulence factors, urease and cagA, play an important role in Helicobacter pylori (H. pylori) gastric cancer. Aim of this study was to investigate the expression level and function of ureB and cagA using small interfering RNAs (siRNA). METHODS: SS1 strain of H. pylori was considered as host for natural transformation. siRNA designed for ureB and cagA genes were inserted in pGPU6/GFP/Neo siRNA plasmid vector to evaluate using phenotypic and genotypic approaches. Then, qPCR was performed for determining inhibition rate of ureB and cagA gene expression. RESULTS: The expression levels of siRNA-ureB and siRNA-cagA in the recombinant strain SS1 were reduced by about 5000 and 1000 fold, respectively, compared to the native H. pylori strain SS1. Also, preliminary evaluation of siRNA-ureB in vitro showed inhibition of urea enzyme activity. These data suggest that siRNA may be a powerful new tool for gene silencing in vitro, and for the development of RNAi-based anti-H. pylori therapies. CONCLUSION: Our results show that targeting ureB and cagA genes with siRNA seems to be a new strategy to inhibit urease enzyme activity, reduce inflammation and colonization rate.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Urease/genética , Urease/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Bactérias/genética , Antígenos de Bactérias/genética
19.
Front Pharmacol ; 14: 1285754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900161

RESUMO

Atherosclerosis is a major instigator of cardiovascular disease (CVD) and a main cause of global morbidity and mortality. The high prevalence of CVD calls for urgent attention to possible preventive measures in order to curb its incidence. Traditional risk factors of atherosclerosis, like age, smoking, diabetes mellitus, dyslipidemia, hypertension and chronic inflammation, are under extensive investigation. However, these only account for around 50% of the etiology of atherosclerosis, mandating a search for different or overlooked risk factors. In this regard, chronic infections, by Helicobacter pylori for instance, are a primary candidate. H. pylori colonizes the gut and contributes to several gastrointestinal diseases, but, recently, the potential involvement of this bacterium in extra-gastric diseases including CVD has been under the spotlight. Indeed, H. pylori infection appears to stimulate foam cell formation as well as chronic immune responses that could upregulate key inflammatory mediators including cytokines, C-reactive protein, and lipoproteins. These factors are involved in the thickening of intima-media of carotid arteries (CIMT), a hallmark of atherosclerosis. Interestingly, H. pylori infection was found to increase (CIMT), which along with other evidence, could implicate H. pylori in the pathogenesis of atherosclerosis. Nevertheless, the involvement of H. pylori in CVD and atherosclerosis remains controversial as several studies report no connection between H. pylori and atherosclerosis. This review examines and critically discusses the evidence that argues for a potential role of this bacterium in atherogenesis. However, additional basic and clinical research studies are warranted to convincingly establish the association between H. pylori and atherosclerosis.

20.
Biomed Rep ; 19(6): 89, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37901879

RESUMO

H. pylori is a bacterial pathogen infecting over half of the world's population and induces several gastric and extra-gastric diseases through its various virulence factors, especially cagA. These factors may be released from the bacteria during interactions with host immune cells. Neutrophils play key roles in innate immunity, and their activity is regulated by plasma factors, which can alter how these cells may interact with pathogens. The aim of the present study was to determine whether purified neutrophils could produce reactive oxygen species (ROS), one of the key functions of their anti-microbial functions, in response to extracts of cagA+ and cagA- H. pylori. Extracts from either cagA+ or cagA- H. pylori were co-cultured with human neutrophils in the presence or absence of plasma, and the neutrophil ROS production was measured. In the absence of plasma, extracts from cagA+ and cagA- H. pylori did not induce neutrophil ROS production, whereas in the presence of plasma, extracts from both cagA+ and cagA- H. pylori-induced ROS production. Furthermore, when peripheral blood mononuclear cells (PBMCs) were added to the purified neutrophils in the absence of plasma, there was no neutrophil ROS production after challenging with extracts from either cagA+ or cagA- H. pylori. Thus, it is suggested that plasma contains immunological components that change the responsiveness of neutrophils, such that when neutrophils encounter the bacterial antigens in H. pylori extracts, they become activated and produce ROS. This study also revealed a potential novel immunopathogenic pathway by which cagA activation of neutrophils contributed to inflammatory damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...